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INTRODUCTION

An experimental research program is currently underway at the Calspan-UB

Research Cent:_r (CUBRC) that is designed to obtain detailed heat-flux and surface-

pressure distribution on the first-stage vane and first-stage blade of the SSME fuel-

side turbopump turbine. This particular turbine is a two-stage m _chine and both stages

w [l be in use. However, at the present time, the first-stage vane, the first-stage

blade, and the second sta_,e vane will be instrumented. The specific turbine being

utilized is a combination o[ actual engine hardware and reproduced hardware consistent

with that being use_ at NASA Marshall Space Flight Center for the initial measurements

in their newly constructed blow-down turbine test facility.

The facilit) beint", used at "_UBRC is also a blow-down type facility, but it is of

the short-duration shock-tunnel variety. The short-duration nature of the shock-tunnel

facility permits use of thin-film thermometers which are used to measure the surface

temperature histories at prescribed locations on the turbine component parts. Heat-

Hux ,alues are then inJ :._rred from the temperature histories using standard data reduction

procedures. Miniature surface mounted pressure transducers are also used on both the

vane and the rotating blade to obtain the desired pressure distributions.

_The research described in this paper was supported by NASA Lewis Research Center

under Grant No. NAG 3-5g[.
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EXPERIMEN FAL APPARATUS

The experimental apparatus sketched in Figure 1 consists of a 0.47-m (18.5-[n)

i.d. helium-driven shock tube with a 12.2-m (40-ft.) long driver tube and an 18.2-m

(60-ft.) long driven tube as a short-duration source o[ heated air, supplying the test

section device located near the exit o[ the prhnary shock-tunnel nozzle. The 2.7-m

(9-_t.) i.d. receiver tank is initially evacuated to a pressure on the order of J tort in

ordc" to minimize the flow establishment characteristics of tile model. The useful test

tim_ in this facility for the test conditions to be used for the SSME measurements is

on t:le order of 35 rns, which is nearly two times greater than the test time available

for the facility used in the previous CUBRC full-stage turbine studies (References I-6).

A more detailed photograph of tile test section devic_ housing the two-stage turbine

is shown n Figure 2. This device consists of a [crward transition section with a

ci:'cular opening facing the supersonic pri_nary nozzle flow. This transition section is

followed by the 360 deg. annular passage containing the turbine stages. Downstream

of the' second rotor exit is an annular passage with a contoured nozzh_ at the exit.

This ,_ozzle is _Jsed to establish the desired pressure ratio across the turbine. The

inter_ al model configuration duplicates the SSME turbopump configuration includin_ the

tweDe upstream struts and tile protruding bolt head on the dome. In our configuration,

this :orward dom_ houses an air motor that is used to accelerate the turbine from te:_t

to 'le desired speed just prior to initiation of the experiment and prior to arrival of

the test gas. The aft internal cavity houses a 200-channel slip ring that is used to

tra_ sfer the pressure and heat-transl_er data from the rotor blade to the laboratory

dat,_ recorders.

Figures 3 and /4 are front and rear photographs o[ the first stage nozzle guide

vane ring. A contoured le_ding-edge insert containing ten thin-film heat-flux gages

Will be i ,stalled at midspan on vane No. 32. Button-type thin-tim gages will be installed

on vane No. 16 (pressure surface) and vane No. 17 (suction surface) at 10%, 50%, a_/d

90% sran. Miniature surface mounted pressure transducers will be installed at [0_,6

span on vane No. 13 (pressure surface) and vane No. 1_ (suction surface), at 50% on

vane No. 23 (press_are surface) and vane No. 24 (suction surface), and at 90%span on

vane No. 29 (press ire surface) and vane No. 30 (suction surface). The specific vanes

and instrumenttion locations on those vanes at which pressure measurements will be

performed are consistent with the Marshall instrumentation plan. The heat-flux

measurements will be performed at locations such that direct comparisons can be made

between the heat-flux and surface-pressure resalts.
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Figur_ 4 illustrates removal of a portion of the vane near the hub wall. This cut

in vane profile is consistent with flight engine hardware. Several heat-flux gag_s have

been placed near this cut on both the pressure and suction surfaces and on I11e hub

endwall in order to investigate the influence of the cut on the flow field.

Figure 5 is a photograph of one of the first-stage rotor blades that will be

instrumented with flush-mounted miniature pressure transducers and thin-film heat-flux

gages. Both heat-fl_Jx and pressure instrumentation will be placed at selected chordwise

locations at I0%, :_0% and 90% spans. The heat-flux instrumentation wil! be composed

of button-type gages and a leading-edge insert.

The waeasurements in and along the flowpath are important for determining the

gas dynamics into and out of the turbine stage. The turbine model shown in Figure 2

h_s approximately twenty static pressure measurements distributed between the inner

._id outer portions of the model flow path. Static pressure measurements of particular

_mportance are tho_e at the inlet to the guide vane row, the intra stage measurements,

and the static pressure measurements downstream of the second rotor. A spanwise

total pressure rake is placed downstream of the second rotor and an attempt is being

made to fit such a rake int,, the flow just downstream of the first rotor. Further, an

attempt is being made to install a spanwise rake of total temperature probes Jownstream

o r the first rotor. The rakes just described may result in excessive flow blockage at

the location of interest_ and i[ so would be moved to a station downstream of the

second rotor.

EXPERIMENTAL CONDITIONS

The SSME tu:bopump operates with a test gas composed of hydrogen plus steam.

The [acility to be used at CUBRC will operate with air as the test gas, but the

appr_priate scaling has b' en done to achieve the corrected conditions at the turbine

inlet. It is import mt that the experiment duplicate the design flow function (w_/6),

the corrected spee_ (Nphy/If6') _ the wall to total temperature ratio (Tw/To) , and the

stage total to sta[ic pressure ratio (Po)in/Ps)out). It is also important to produce a

turbine inlet Reynolds number sufficiently close to the operating value tllat the inlet

boundary-layer characteristics are representative.
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The SSME turbopump turbine measurements will be performed in a large turbine

test facility at the Calspan Corporation. Because of the large dimensions of this

facility it is possible to plat" the inlet to the model housing the two-stage turbine at

a couple of different locations in the nozzle expansion (see Figure I), and in this

manaer) change the turbine inlet total pressure and Reynolds number while holding the

turbine inlet total temperature constant.
+

The nominal flow conditions for the SSME fuel side turbopump arel T O = 1890OR,

Po = 5526 psia) inlet Mach No. = 0.l/_, inlet density = 4.29 lbm/ft 3 (H 2 + steam), Flow

Function = 2.28, and overall total to static pressure ratio = 1.52.

For the prop)sed measurements, air would be used as the test gas instead of

hydrogen plus steam. Two experimental test conditions will be run, both at a total

temperature oF the turbine inlet gas equal to i000°R and both at the appropriate flow

fJnction) overall total to static pressure ratio, and corrected speed. The two test

conditions would provide two different turbine inlet total pressure values and Reynolds

number values as noted in "Fable I.

Table 1

TEST CONDITIONS WITH AIR AS TEST GAS

Test
Condi tion Shock-Tube Conditions

Po I T_ W.)throat
psia Op_ ibm/see

#I 1!00 I000

#2 2500 1000

523

1188

t

Model Conditions
Ahead of Vane

3

Po ITo Re
psia I°R /ft

: I
270 ii000 l lxl07

615 I I000 12x107 :
• i I

Turbine Conditions

W

lbm/sec

31.6

71.7

Rotor

Speed

rpm

9731

9731

TwIT o

=

=

=

CONCL USIONS

The current stat_xs o[ the measurement program described herein is as follows:

(a) The model to house the two stage turbine has been designed and detailed engineering

drawings have been prepared. Construction of the model has been initiated and is

planned for completion in 3uly 1989, (b) the pressure and heat-flux gages have been

constructed and calibrated. Installation of this instrumentation in the components shown
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in Figures 3 and 5 is scheduled for completion in 3une 1989, and (c) upon delivery of

the model c:,mpon.:nts, the instrumented vanes and blades will be installed and the

measurement program will begin in the Summer of 1989.

REFERENCES

l,

,

3,

Dunn, M.G., "Experimental Measurements of Heat-Flux Distributions in a Tur')ine

Stage with Upstream Disturbances," paper presented at the 1986 Advanced Earth

to Orbit Propulsion Technology Con[., Huntsville, Alabama, 13-15 May 1986.

Dunn, M.G., "Heat-Flux Measurements for the Rotor of a Full-Stage Turbine:

Part I - Time-Averaged Results," ASME 3ournal of Turbomachinery, vol. 108, pp.

90-9;, 3uly 1986 (_lso presented at the 31st International Gas Turbine Con[. 3une

8-12, 1986, paper no. 86-GT-77).

Dum b M.G., George, W.K., Rae, W.3., Woodward_ S.H., Moiler, 3.C., and Seymour,

P.'I., "Heat-Flux Measurements for the Rotor of a Full-Stage Turbine: Part II -

De.;cription of Analysis Technique and Typical Time-Resolved Measurements,"

AS_4E 3ournal of Turbomachinery, Vol. 108, pp. 98-107, 3uly 1986. (Also Presented

at the 31st International Gas Turbine Conf., 3une 8-12, 1986, Paper No. 86-GT-78.)

Dunn, M.G., "Phase and Time-Resolved Measureme:lts of Unsteady Heat Transler

and Pressure in a Full-Stage Rotating Turbine," Paper Presented at the 19gg

Con[erence on Advanced Earth-to-Orbit Propulsion Technology, 10-12 May 1988.

Dunn, M.G., Seymour, P.3., WooJward, S.H., George, W.K., and Chupp, R.E.,

"Phase-Resolved Heat-Flux Measurements on the Blade of a Full-Scale Rotating

Turbine," ASME Journal of Turbomachinery, Vol. Ill, pp. 8-18, January 1989.

(Also Presented at the 33rd International Gas Turbine Conference Paper No.

ASME 88-GT-173, 5-9 3une 1988.)

o Dunn, M.G., "Phase and Time-Resolved Measurements of Unsteady Heat Trans[er

and Pressure in a Full-Stage Rotating Turbine," Paper to be Presented at the

34th ASME International Gas Turbine Conference, 4-9 June 1989. (Also accepted

for publication in the ASMt_ 3ournal of Turbomachinery.)

219



18.S" DRIVER
ID x 40" LONG

\

/
DIAPHRAGMS

MODEL INLET

18,S" DRIVEN

ID x 60' LONG

\
NOZZLE /

10"S °CONE

6" A T'ACTtNG /

VALVE /

45" DIA,

EVACUATED DUMP TANK
9' iD x 33' LONG

\

TURBINE STAGE FLOW-CONTROL
NOZZLE

NOZZLE EXIT

Figure I SKETCH OF MODEL HOUSING TURBINE STAGE LOCATED IN FACILITY
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Figure 2 SKETCH OF MODEL TO HOUSE TURBINE sTAGE
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Figure 3 FRONT-VIEW PHOTOGRAPH OF FIRST-STAGE VANE

Figure 4 REAR-ViEW PHOTOGRAPH OF FIRST-STAGE VANE
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Figure 5 PHOTOGRAPH OF FIRST-STAGE BLADE
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